Investigating the effect of the financial crisis on the Iranian oil market: complexity network

Document Type : Original Article

Authors

1 Corresponding Author: PH.D. Candidate in Economics, Faculty of Economics, Management and Accountancy, Yazd University, Yazd, Iran

2 Associate Professor, Faculty of Economics, Management and Accounting, Yazd University, Yazd. Iran

Abstract

The financial crisis can affect oil revenues due to the effect on oil price fluctuations and the amount of oil sold, so the purpose of this study is to model the financial crisis turbulence spillover in the oil markets network. For this purpose, the data of the period 2/1/2003 to 26/8/2019 and the complex network have been used. The findings show that the average path length is reduced to a minimum during financial crises. The density and weight of the oil market spillover network has increased during such periods. Turbulence in financial markets has increased in times of crisis. According to the research results, the financial crisis causes the Iranian oil market to be more affected by the network, but it is still an influential oil market in the oil markets network. Prior to the financial crisis, the largest turmoil in the Iranian oil market was from the Norway oil market and the lowest turbulence in the Iranian oil market was from the Russian oil market. The largest volatility spillover from the Iranian oil market to the Norway oil market has been. During the financial crisis, the biggest turbulence in the Iranian oil market came from the oil markets of Mexico, Libya and Saudi Arabia. The most significant spillover of turbulence from the Iranian oil market was to the Saudi oil market. After the financial crisis, the biggest volatility spillover from the Mexican oil market to the Iranian oil market. The least volatility spillover was from the Egypt oil market

Keywords


ابراهیمی، محسن، بابایی آغ اسمعیلی، و کفیلی، وحید (1395). بررسی رژیم­های قیمتی دو شاخص عمده بازار جهانی نفت (برنت و وست‌تگزاس) قبل و بعد از بحران مالی: کاربردی از رویکرد مارکف سوییچینگ. اقتصاد مقداری. 13(3): 83-57.
باقری، سمانه و انصاری سامانی، حبیب (1399). بررسی اثرات سرریز بحران‌های مالی جهانی بر بازار نفت اوپک. نشریه انرژی ایران. 103-85: (3)23.
حسن‌زاده، ع، و کیانوند، م (1388). بحران مالی جهانی، بازار جهانی نفت و استراتژی اوپک. تازه‌های اقتصاد. 7(126): 84-94.
دستخوان، ح، و شمس قارنه، ن (1396). مقایسه شاخص‌های ارزیابی ریسک سیستمی در شبکه‌های مالی: شناسایی شرکت‌های مهم از نظر سیستمی در بازار بورس تهران. فصلنامه مدلسازی ریسک و مهندسی مالی. 2(1): 1-21.
رحیمی باغی، علی و عرب صالحی نصرآبادی، مهدی (1397). ارزیابی ریسک سیستمی در نظام مالی کشور. تحقیقات مالی. 21(1): 121-142.
شاکری، عباس، محمدی، تیمور، و جعفری، محمد (1398). تأثیر نوسانات بازارهای مالی جهانی بر بازار نفت اوپک با تأکید بر بحران مالی 2008. پژوهشنامه اقتصادی. 19(74): 38-1.
قویدل، صالح، حسن­نیا، ماریه، و خانعلی­پور، امیر (1393). بحران­های مالی بر بازار جهانی نفت (کاربردی از GARCH و الگوریتم icss). مطالعات اقتصاد انرژی. 10(43): 180-155.
محسنی، حسین و بت­شکن، محمدهاشم (1397). بررسی سرریز نوسانات قیمت نفت بر بازدهی بازار سهام. دانش سرمایه‌گذاری. 7(25): 267-284.
محسنی، حسین و بت­شکن، محمدهاشم (1399). بررسی همبستگی شرطی میان صنایع در بازار سرمایه. پژوهش‌های راهبردی بودجه و مالی. 1(1): 91-86.
 
Adelman, M. A. (1984). International oil agreements. The Energy Journal5(3).
Adelman, M. A. (1992).  Is the World Oil Market'One Great Pool?. The Energy Journal13(1).
An, S., Gao, X., An, H., An, F., Sun, Q., & Liu, S. (2020). Windowed volatility spillover effects among crude oil prices. Energy200.
Annual petroleum and other liquids production. U.S. Energy Information Administration. Retrieved 26 March 2021.
Antonakakis, N., Badinger, H. (2015). Economic growth, volatility, and cross-country spillovers: New evidence for the G7 countries, Econ. Model
Bhanja, N., Dar, A. B., & Tiwari, A. K. (2018). Do global crude oil markets behave as one great pool? A cyclical analysis. Journal of Business Cycle Research, 14(2), 219-241.
Bhanja, N., Nasreen, S., Dar, A. B., & Tiwari, A. K. (2021). Connectedness in International Crude Oil Markets. Computational Economics, 1-36.
Bollerslev, T., Chou, R. Y., & Kroner, K. F. (2011). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52, 5–59.
Carollo, S. (2012). Understanding Oil Prices: A Guide to what Drives the Price of Oil in Today's Markets, John Wiley & Sons, Vol. 634.
Chaudhari, H,. Crane, M. (2020). Cross-correlation dynamics and community structures of cryptocurrencies. Journal of Computational Science,
Chowdhury, B, Dungy, M, Kangogo, M, Abu Sayeed, M, Volkov, V. (2019). The Changing Network of Market Linlage: The Asian Experience, International Review of Financial Analysis, 64: 71-92.
Diebold, F.X., Yilmaz, K. (2012). Better to give than to receive: predictive directional measurement of volatility spillovers. Int. J. Forecast. 28 (1): 57–66.
Fasanya, I., & Akinbowale, S. (2019). Modelling the return and volatility spillovers of crude oil and food prices in Nigeria. Energy169, 186-205.
Gong,C and Tang, P,Wang,T. (2019). Measuring the network connectedness of global stock markets. Physica A. 535: 1-10.
Guo, F., Chen, C. R., & Sophie Huang, Y. (2011). Markets contagion during financial crisis: A regime-switching approach. International Review of Economics & Finance, 20 (1), 95-109.
Hamilton, J. D. (2009). The causes and consequences of the oil shock of 2007–08. NBER Working Paper.
Hamma, w., Jarboui, A, Ghorbel, A. (2014). Effect of oil price volatility on Tunisian stock market at sector-level and effectiveness of hedging strategy. Procedia Economics and Finance, 13, 109 – 127.
Hammoudeh, S., & Li, H. (2004). The impact of the Asian crisis on the behavior of US and international petroleum prices. Energy Economics, 26 (1), 135-160.
Iannuzzi, E, and Berardi, M. (2011). Global Financial Crisis: Causes and Perspective. EuroMed. Journal of Business, 5(3), 279-297.
Ji, Q., & Fan, Y. (2015). Dynamic integration of world oil prices: A reinvestigation of globalisation vs. regionalisation. Applied Energy155, 171-180.
Ji, Q., & Fan, Y. (2016). Evolution of the world crude oil market integration: A graph theory analysis. Energy Economics53, 90-100.
Joo, K, Suh, J,H, Lee,D,Y, Ahn,K. (2020). Impact of the global financial crisis on the crude oil market. Energy Strategy Reviews. Energy Strategy Reviews, 30.
Kallis, G and Sager, G. (2016). Oil and the economy: A systematic review of the literature for ecological economists. Ecological Economics,
Kilian, L. (2006). Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market, University of Michigan.
Kilian, L., Lee, T.K. (2014). Quantifying the speculative component in the real price of oil: the role of global oil inventories. J. Int. Money Finance, 42, 71–87.
Kuzubaş, T, Ömercikoğlu, I and Burak, S. (2014). Network centrality measures and systemic risk: An application to the Turkish financial crisis. Physica A. 405: 203-2015.
Lahmiri, S. (2016). A Study on Chaos in Crude Oil Markets Before and After 2008 International Financial Crisis, Physica A: Statistical Mechanics and its Applications, 466: 389-395.
Lei, L., Shan,Y Chen,Y Weid, Y. (2018). Does the financial crisis change the economic risk perception of crude oil traders? A MIDAS quantile regression approach. Finance Research Letters.
Liu, L., Chen, C. C., & Wan, J. (2013). Is world oil market “one great pool”?: An example from China's and international oil markets. Economic Modelling35, 364-373.
Malliaris, A. G., & Ramaprasad, B. (2011). Oil Prices and the Impact of the Financial Crisis of 2007-2009. Energy Economics, 33(6), 1049-1054.
Mensy, W. (2017). Global Financial Crisis and Co-movements between Oil Prices and Sector Stock Markets in Saudi Arabia: A VaR based Wavelet. Borsa istanbul Review, 1-40.
Mollick, A.V and Asefa, T,A. (2013). US Stock Returns and Oil Prices: The Tale From Daily Data and The 2008-2009 Financial Crisis. Energy Economics, 36: 1-18.
Nonejad, N. (2020). A detailed look at crude oil price volatility prediction using macroeconomic variables. Journal of Forecasting39(7), 1119-1141.
Plante, M., & Strickler, G. (2021). Closer to One Great Pool? Evidence from Structural Breaks in Oil Price Differentials. The Energy Journal42(2).
Rafiq, S., Salim. R., & Bloch, H. (2009). Impact of crude oil volatility on economic activities: an empirical investigation in the Thai economy. Resources Policy, 34, 212-132.
Rodriguez, A. E., & Williams, M. D. (1993). Is the World Oil Market" One Great Pool"? A Test. Energy Studies Review5(2).
Salameh, M.G. (2004). Oil Crises, Historical Perspective. Encyclopedia of Energy, 633-648.
Schuenemann, J. H, Ribberink, N, Katenka, N. (2020). Japanese and Chinese Stock Market Behaviour in Comparison – an analysis of dynamic networks. Asia Pacific Management Review, 25(2): 99-110.
Wen, F, Zhang, M, Deng, M, Zhao, Y. and Ouyang, J. (2019). Exploring the dynamic effects of financial factors on oil prices based on a TVP-VAR model. Physica A. 532:  1-12.
Zavadska, M, Morales, L, and Coughlan, J, (2018). Brent Crude Oil Prices Volatility during Major Crises. Finance Research Letters,, 1-20.
Zhang,T. F. and Ma, B. Shi. (2018). Forecasting the prices of crude oil: An iterated combination approach, Energy Econ.70: 472–483.
Zhang, W, Zhuang, X and Lu,Y. (2020). Spatial spillover effects and risk contagion around G20 stock markets based on volatility network North American. Journal of Economics and Finance,
Wang, Y., & Wu, C. (2012). Energy prices and exchange rates of the US dollar: Further evidence from linear and nonlinear causality analysis. Economic Modelling29(6), 2289-2297.
Weiner, R. J. (1991). Is the World Oil Market. The Energy Journal12(3).
Yu, L, Zha, R,. Stafylasb, D, He, K. Liud, J. (2021). Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models. International Review of Financial Analysis.
Zhang, D., Ji, Q., & Kutan, A. M. (2019). Dynamic transmission mechanisms in global crude oil prices: estimation and implications. Energy175, 1181-1193.
Zhang, w,  Zhuang, X, Lu, y. (2020). Spatial spillover effects and risk contagion around G20 stock markets based on volatility network. The North American Journal of Economics and Finance.