banks' evaluation variables identification and reduction in the data envelopment analysis context using structural equation modeling

Document Type : Original Article

Authors

1 Industrial management department, Management and accounting faculty, allameh tabataba'i university, Tehran, Iran

2 Industrial Management Dept, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran

3 Industrial management department, Management and accounting faculty, Allameh tabataba’I university, Tehran, Iran

4 Industrial engineering faculty, University of science and technology, Tehran, Iran

Abstract

Data envelopment analysis method is one of the most widely used methods to performance evaluation of banks. According to extensive studies in the field of bank performance evaluation, various data envelopment analysis models such as basic CCR, BCC models, multi-stage and network models have been presented. According to the models and developments, have been used various and numerous variables. In this research, first, the types of variables in the bank’s evaluation were identified and categorized. On the other hand, the presence of many variables for evaluation in the context of data envelopment analysis would violate the general rule that confirmed relation between decision maker units and evaluation variables. Therefore, an a priori approach was used to reduce the variable before implementing the data envelopment analysis model. The approach was used based on structural equation modeling and confirmatory factor analysis, which was analyzed using AMOS and SPSS software. Elementary analyze result show that model fit indices not confirmed and some of variables non- significance at 90% confidence level and have low factor loading. Therefore, Due to the non-significance of a number of variables, the variable was adjusted. The results of the modified model analysis confirmed it. Using this approach, extracted the effective and key inputs and outputs that capable to make distinguish between banks performance. Finally, model variable reduced from 22 to 8. As a result, this approach can be applied for identification key variables from variable lake in the banks evaluation and other evaluation system with many indicators.

Keywords

Main Subjects


Smiley face

آذر، ع.، محمد، ز. م. آ.، عباس، م. ب. ع.، و آمنه، خ. (1393). سنجش بهره‌وری شعب بانک با رویکرد تحلیل پوششی داد‌ه‌های شبکه‌ای (یکی از بانک‌های استان گیلان). فصلنامه پژوهش‌های پولی- بانکی، 7(20)، 285–305.
دامغانی، ک. خ.، فرد، م. ت. ت.، و کرباسچی، ک. (1395). ارائه یک رویکرد ترکیبی مبتنی بر تحلیل چند معیاره رضایت و تحلیل پوششی داده‌های شبکه‌ای سه‌مرحله‌ای برای ارزیابی کارایی خدمات شعب بانک ملی ایران. مطالعات مدیریت صنعتی،  14(40)، 75–109.
صالح، ه.، لطفی، ف. ح. ز.، خلیفه، م. ر. م.، و شفیعی، م. (1399). ارزیابی عملکرد و تعیین بازده به مقیاس در تحلیل پوششی داده‌های شبکه‌ای. مجله مدل‌سازی پیشرفته ریاضی، 10(2)، 309–340. https://doi.org/10.22055/JAMM.2020.29434.1719
قاسمی، و. (1392). مدل‌سازی معادلات ساختاری در پژوهش‌های اجتماعی با کاربرد AMOS (چاپ دوم). جامعه‌شناسان.
مومنی، م.، صفری، ح.، رستمی، م.، مصطفایی، ا.، و دامنه، ر. س. (1396). طراحی یک مدل تحلیل پوششی داده‌های شبکه‌ای غیرشعاعی جهت ارزیابی عملکرد. مطالعات مدیریت (بهبود و تحول)، 86، 1–23.
Alirezaee, M. R., & Afsharian, M. (2007). A complete ranking of DMUs using restrictions in DEA models. Applied Mathematics and Computation, 189(2), 1550–1559. https://doi.org/10.1016/j.amc.2006.12.031
Amirteimoori, A., & Emrouznejad, A. (2012). Optimal input/output reduction in production processes. Decision Support Systems, 52(3), 742–747. https://doi.org/10.1016/j.dss.2011.11.020
Andersen, P., & Petersen, N. C. (1993). A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39(10), 1261–1264. https://doi.org/10.1287/mnsc.39.10.1261
Banker, A. R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
Benítez-Peña, S., Bogetoft, P., & Romero Morales, D. (2020). Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach. Omega (United Kingdom), 96. https://doi.org/10.1016/j.omega.2019.05.004
Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: International survey and directions for future research. European Journal of Operational Research, 98(2), 175–212. https://doi.org/10.1016/S0377-2217(96)00342-6
Bollen, K. A. (1989). Structural Equations with Latent Variables. John Wiley & Sons.
Carayannis, E. G., Grigoroudis, E., & Goletsis, Y. (2016). A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach. Expert Systems with Applications, 62, 63–80. https://doi.org/10.1016/j.eswa.2016.06.017
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Cooper, W. W., Sciford, L. M., & Tone, K. (2007). DATA ENVELOPMENT ANALYSIS A Comprehensive Text with Models , Applications , References Second Edition. Springer Science+Business Media.
David SHERMAN, H., & Gold, F. (1985). Evaluation with Data Envelopment Analysis. Journal of Banking and Finance, 9, 297–315.
Emrouznejad, A., & Yang, G. liang. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4–8. https://doi.org/10.1016/j.seps.2017.01.008
Eskelinen, J. (2016). Comparison of variable selection techniques for data envelopment analysis in a retail bank. European Journal of Operational Research, 259(2), 778–788. https://doi.org/10.1016/j.ejor.2016.11.009
Faramarzi, G. R., Khodakarami, M., Shabani, A., Farzipoor Saen, R., & Azad, F. (2015). New network data envelopment analysis approaches: An application in measuring sustainable operation of combined cycle power plants. Journal of Cleaner Production, 108. https://doi.org/10.1016/j.jclepro.2015.06.065
Fethi, M. D., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques : A survey. European Journal of Operational Research, 204(2), 189–198. https://doi.org/10.1016/j.ejor.2009.08.003
Friedman, L., & Sinuany-Stern, Z. (1998). Combining ranking scales and selecting variables in the DEA context: The case of industrial branches. Computers and Operations Research, 25(9), 781–791. https://doi.org/10.1016/S0305-0548(97)00102-0
Guo, C., Wei, F., Ding, T., Zhang, L., & Liang, L. (2017). Multistage network DEA: Decomposition and aggregation weights of component performance. Computers and Industrial Engineering, 113, 64–74. https://doi.org/10.1016/j.cie.2017.08.019
Henriques, I. C., Sobreiro, V. A., Kimura, H., & Mariano, E. B. (2018). Efficiency in the Brazilian banking system using data envelopment analysis. Future Business Journal, 4(2), 157–178. https://doi.org/10.1016/j.fbj.2018.05.001
Izadikhah, M., Tavana, M., & Di, D. (2017). A novel two-stage DEA production model with freely distributed initial inputs and shared intermediate outputs. Expert Systems With Applications, 0, 1–18. https://doi.org/10.1016/j.eswa.2017.11.005
Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, 147(1), 51–61. https://doi.org/10.1016/S0377-2217(02)00243-6
Kao, C., & Hung, H. T. (2005). Data envelopment analysis with common weights: The compromise solution approach. Journal of the Operational Research Society, 56(10), 1196–1203. https://doi.org/10.1057/palgrave.jors.2601924
Li, Y., Shi, X., Yang, M., & Liang, L. (2017). Variable selection in data envelopment analysis via Akaike’s information criteria. Annals of Operations Research, 253(1), 453–476. https://doi.org/10.1007/s10479-016-2382-2
Liu, J. S., Lu, L. Y. Y., Lu, W. M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega (United Kingdom), 41(5), 893–902. https://doi.org/10.1016/j.omega.2012.11.004
Luo, X. (2003). Evaluating the profitability and marketability efficiency of large banks: An application of data envelopment analysis. Journal of Business Research, 56(8), 627–635. https://doi.org/10.1016/S0148-2963(01)00293-4
Nataraja, N. R., & Johnson, A. L. (2011). Guidelines for using variable selection techniques in data envelopment analysis. European Journal of Operational Research, 215(3), 662–669. https://doi.org/10.1016/j.ejor.2011.06.045
Ohsato, S., & Takahashi, M. (2015). Management Efficiency in Japanese Regional Banks : A Network DEA. Procedia - Social and Behavioral Sciences, 172, 511–518. https://doi.org/10.1016/j.sbspro.2015.01.394
Paradi, J. C., Rouatt, S., & Zhu, H. (2011). Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega, 39(1), 99–109. https://doi.org/10.1016/j.omega.2010.04.002
Paradi, J. C., & Zhu, H. (2013). A survey on bank branch efficiency and performance research with data envelopment analysis. Omega (United Kingdom), 41(1), 61–79. https://doi.org/10.1016/j.omega.2011.08.010
Paradi, J. C., Zhu, H., & Edelstein, B. (2012). Identifying managerial groups in a large Canadian bank branch network with a DEA approach. European Journal of Operational Research, 219(1), 178–187. https://doi.org/10.1016/j.ejor.2011.12.022
Pendharkar, P. C. (2020). A comparison of ensemble and dimensionality reduction dea models based on entropy criterion. Algorithms, 13(9). https://doi.org/10.3390/A13090232
Portela, M. C. A. S., Thanassoulis, E., & Simpson, G. (2004). Negative data in DEA: A directional distance approach applied to bank branches. Journal of the Operational Research Society, 55(10), 1111–1121. https://doi.org/10.1057/palgrave.jors.2601768
Raykov, T., & Marcoulides, G. A. M. (2006). A First Course in Structural Equation Modeling. In LAWRENCE ERLBAUM ASSOCIATES (second).
Subramanyam, T., Donthi, R., Satish Kumar, V., Amalanathan, S., & Zalki, M. (2021). A new stepwise method for selection of input and output variables in data envelopment analysis. Journal of Mathematical and Computational Science, 11(1), 703–715. https://doi.org/10.28919/jmcs/5205
Subramanyam T. (2016). Selection of Input-Output Variables in Data Envelopment Analysis -Indian Commercial Banks. International Journal of Computer & Mathematical Sciences IJCMS ISSN, 5(6), 2347–8527.
Toloo, M., Keshavarz, E., & Hatami-Marbini, A. (2021). Selecting data envelopment analysis models: A data-driven application to EU countries. Omega (United Kingdom), 101, 102248. https://doi.org/10.1016/j.omega.2020.102248
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega (United Kingdom), 42(1), 124–131. https://doi.org/10.1016/j.omega.2013.04.002
Ueda, T., & Hoshiai, Y. (1997). Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs. Journal of the Operations Research Society of Japan, 40(4), 466–478.
Villanueva-Cantillo, J., & Munoz-Marquez, M. (2021). Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis. European Journal of Operational Research, 290(2), 657–670. https://doi.org/10.1016/j.ejor.2020.08.021
Wang, W. K., Lu, W. M., & Liu, P. Y. (2014). A fuzzy multi-objective two-stage DEA model for evaluating the performance of US bank holding companies. Expert Systems with Applications, 41(9), 4290–4297. https://doi.org/10.1016/j.eswa.2014.01.004
Wu, D. (Dash), Yang, Z., & Liang, L. (2006). Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis. Applied Mathematics and Computation, 181(1), 271–281. https://doi.org/10.1016/j.amc.2006.01.037
Yu, M., Lin, C., Chen, K., & Chen, L. (2019). Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach. Omega, 102145. https://doi.org/10.1016/j.omega.2019.102145
Zarghami, S., & Amiri, M. (2021). A hybrid approach for performance evaluation and ranking of divisional structure organisations. International Journal Advanced Operations Management, 13(4), 431–458. https://doi.org/10.1504/IJAOM.2021.120780
Zohrehbandian, M., Makui, A., & Alinezhad, A. (2010). A compromise solution approach for finding common weights in DEA: An improvement to Kao and Hung’s approach. Journal of the Operational Research Society, 61(4), 604–610. https://doi.org/10.1057/ jors.2009.4