Freitas, F. D., De Souza, A. F., & De Almeida, A. R. (2009). Prediction-based portfolio optimization model using neural networks. Neurocomputing, 72(10-12), 2155-2170. Doi: 10.1016/j.neucom.2008.08.019
Nafia, A., Yousfi, A., & Echaoui, A. (2023). Equity-Market-Neutral Strategy Portfolio Construction Using LSTM-Based Stock Prediction and Selection: An Application to S&P500 Consumer Staples Stocks. International Journal of Financial Studies, 11(2), 57. Doi: 10.3390/ijfs11020057
de Freitas, F. D., De Souza, A. F., & de Almeida, A. R. (2006). A prediction-based portfolio optimization model. In Proc. 5st Int. Symp. Robot. Automat. (pp. 520-525).
Hao, C., Wang, J., Xu, W., & Xiao, Y. (2013, November). Prediction-based portfolio selection model using support vector machines. In 2013 Sixth International Conference on Business Intelligence and Financial Engineering (pp. 567-571). IEEE.
Wang, J. Z., Wang, J. J., Zhang, Z. G., & Guo, S. P. (2011). Forecasting stock indices with back propagation neural network. Expert Systems with Applications, 38(11), 14346-14355. Doi: 10.1016/j.eswa.2011.04.222
Lin, C. M., Huang, J. J., Gen, M., & Tzeng, G. H. (2006). Recurrent neural network for dynamic portfolio selection. Applied Mathematics and Computation, 175(2), 1139-1146.
Samarawickrama, A. J. P., & Fernando, T. G. I. (2017, December). A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market. In 2017 IEEE International Conference on Industrial and Information Systems (ICIIS) (pp. 1-6). IEEE.
Lee, H. C., & Ko, B. (2019). Fund price analysis using convolutional neural networks for multiple variables. IEEE Access, 7, 183626-183633.
Ma, Y., Han, R., & Wang, W. (2020). Prediction-based portfolio optimization models using deep neural networks. Ieee Access, 8, 115393-115405. Doi: 10.1109/ACCESS.2020.3003819
Lee, S. I., & Yoo, S. J. (2020). Threshold-based portfolio: the role of the threshold and its applications. The journal of supercomputing, 76(10), 8040-8057.
Alizadeh, M., Rada, R., Jolai, F., & Fotoohi, E. (2011). An adaptive neuro‐fuzzy system for stock portfolio analysis. International Journal of Intelligent Systems, 26(2), 99-114.
Sharif Far, A., Khaliliaraghi, M., Raeesi Vanani, I., & Fallahshams, M. (2022). Application of Deep Learning Architectures in Stock Price Forecasting: A Convolutional Neural Network Approach. Journal of Asset Management and Financing, 10(3), 1-20. [In Presian] doi: 10.22108/AMF.2022.129205.1673
Heidari, M., & Amiri, H. (2022). Inspecting the Predictive Power of Artificial Intelligence Models in Predicting the Stock Price Trend in Tehran Stock Exchange. Financial Research Journal, 24(4), 602-623. [In Persian] doi: 10.22059/FRJ.2022.320064.1007149
Zoghi, S., Raei, R., & Falahpor, S. (2022). Presenting a market direction prediction model for gold coin trades in Iran’s Commodity Exchange market using Long Short-Term Memory (LSTM) algorithm. Financial Engineering and Portfolio Management, 13(53), 34-53. [In Persian]
Sarchami, M., Khodamipour, A., Mohammadi, M., & Zeinali, H. (2020). Applying machine learning models in creation of share optimum portfolio and their comparison. Financial Engineering and Portfolio Management, 11(45), 147-176. [In Presian] doi: 20.1001.1.22519165.1399.11.45.7.4
Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., & Duarte, W. M. (2019). Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Systems with Applications, 115, 635-655. Doi: 10.1016/j.eswa.2018.08.003
Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654-669. Doi: 10.1016/j.ejor.2017.11.054
Wang, W., Li, W., Zhang, N., & Liu, K. (2020). Portfolio formation with preselection using deep learning from long-term financial data. Expert Systems with Applications, 143, 113042. Doi: 10.1016/j.eswa.2019.113042
Ta, V. D., Liu, C. M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437. Doi: 10.3390/app10020437
Chaweewanchon, A., & Chaysiri, R. (2022). Markowitz mean-variance portfolio optimization with predictive stock selection using machine learning. International Journal of Financial Studies, 10(3), 64. Doi: doi.org/10.3390/ijfs10030064
Yang, M., & Wang, J. (2022). Adaptability of financial time series prediction based on BiLSTM. Procedia Computer Science, 199, 18-25. Doi: 10.1016/j.procs.2022.01.003
Books
Deboeck, G. J. (Ed.). (1994). Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets (Vol. 39). John Wiley & Sons. ISBN: 978-0-471-31100-3