مدل بهینه سازی پورتفوی مبتنی بر پیشبینی با استفاده از شبکه عصبی CNN و معیار MSAD در بورس اوراق بهادار تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت ، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشگاه شهید چمران اهواز دانشکده اقتصاد و علوم اجتماعی

3 گروه مدیریت- دانشکده اقتصاد و علوم اجتماعی- دانشگاه شهید چمران اهواز،اهواز، ایران

چکیده

در دهه‌های اخیر، بهینه‌سازی پورتفوی به عنوان یک حوزه تحقیقاتی پرطرفدار، مورد توجه زیادی از سوی پژوهشگران قرار گرفته است. کیفیت بهینه‌سازی پورتفوی به سرمایه‌گذاران کمک می‌کند تا سودهای پایدارتری ایجاد کنند. در این پژوهش از شبکه عصبی کانواوشنال (CNN) برای ساخت مدل‌ بهینه‌سازی پورتفوی بر پایه پیش‌بینی استفاده شده است. این مدل‌، نه تنها از مزایای تکنولوژی یادگیری عمیق بهره‌مند می‌باشد، بلکه از مزایای تئوری مدرن پورتفوی نیز برخوردار است. در این رویکرد، ابتدا از CNN برای پیش‌بینی بازده آتی هر سهم استفاده می‌شود. سپس، خطای پیش‌بینی CNN به عنوان معیار ریسک هر سهم به کار گرفته می‌شود. ادغام بازده‌ی پیش‌بینی شده با انحراف نیمه مطلق خطای پیش‌بینی (MSAD)، منجر به ساخت مدل‌ بهینه‌سازی پورتفوی می‌شود. این مدل با پورتفوی هم وزن که سهام آن با CNN انتخاب شده‌ است، مقایسه می‌شود. همچنین، دو مدل پورتفوی مبتنی بر پیش‌بینی از طریق رگرسیون بردار پشتیبان (SVR) به عنوان پورتفوی معیار مورد استفاده قرار می‌گیرند. داده‌های تجربی این پژوهش، شامل شرکت‌های حاضر در شاخص 50 شرکت فعال‌تر بورس اوراق بهادار تهران می‌باشد. نتایج تجربی نشان می‌دهند که مدل پورتفوی مبتنی بر پیش‌بینی با CNN ، عملکرد برتری در مقایسه با SVR در شرایط بازده‌های متفاوت از خود نشان می‌دهد. همچنین، افزایش بازده مورد انتظار می‌تواند منجر به بهبود عملکرد این مدل شود. این پژوهش به وضوح نقش مثبت شبکه‌های عصبی عمیق (DNNها) در ایجاد مدل‌های بهینه‌سازی پورتفوی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A prediction-based portfolio optimization model using CNN neural network and MSAD criterion in Tehran Stock Exchange

نویسندگان [English]

  • Amir Reza Dodange 1
  • Hasanali Sinaei 2
  • Rahim Ghasemiyeh 3
1 Management department - Faculty of economics and social sciences - Shahid Chamran University of Ahvaz - Ahvaz - Iran
2 , Department of Management, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz. Ahvaz. Iran
3 Department of management, Faculty of Economics and Social Sciences, Ahvaz, Iran
چکیده [English]

Portfolio optimization as a popular research field has received many attention from researchers in recent decades. Quality of portfolio optimization helps investors generate more sustainable returns. In this research, Convolutional Neural Network (CNN) is used to build a portfolio optimization model based on prediction. This model not only benefits from deep learning technology, but also benefits from modern portfolio theory.
In this approach, CNN is first used to predict the future return of each stock. Then, the prediction error of CNN is used as the risk measure of each stock. Integrating the predicted return with the semi-absolute deviation of the prediction error leads to the construction of the portfolio optimization model. This model is compared with an equally weighted portfolio whose stocks are selected with CNN. Also, two prediction based portfolio models with support vector regression (SVR) are used as benchmark portfolios. The empirical data of this research includes the companies in the index of 50 most active companies of Tehran Stock Exchange. The experimental results show that the prediction-based portfolio model with CNN shows a superior performance compared to SVR in the conditions of different returns. Also, the increase in the expected return can improve the performance of this model. This research clearly states the positive role of deep neural networks (DNNs) in creating portfolio optimization models.

کلیدواژه‌ها [English]

  • Portfolio optimization
  • Machine learning
  • deep learning
  • Neural networks
  • CNN
Freitas, F. D., De Souza, A. F., & De Almeida, A. R. (2009). Prediction-based portfolio optimization model using neural networks. Neurocomputing, 72(10-12), 2155-2170. Doi: 10.1016/j.neucom.2008.08.019
Nafia, A., Yousfi, A., & Echaoui, A. (2023). Equity-Market-Neutral Strategy Portfolio Construction Using LSTM-Based Stock Prediction and Selection: An Application to S&P500 Consumer Staples Stocks. International Journal of Financial Studies, 11(2), 57. Doi: 10.3390/ijfs11020057
de Freitas, F. D., De Souza, A. F., & de Almeida, A. R. (2006). A prediction-based portfolio optimization model. In Proc. 5st Int. Symp. Robot. Automat. (pp. 520-525).
Hao, C., Wang, J., Xu, W., & Xiao, Y. (2013, November). Prediction-based portfolio selection model using support vector machines. In 2013 Sixth International Conference on Business Intelligence and Financial Engineering (pp. 567-571). IEEE.
Wang, J. Z., Wang, J. J., Zhang, Z. G., & Guo, S. P. (2011). Forecasting stock indices with back propagation neural network. Expert Systems with Applications, 38(11), 14346-14355. Doi: 10.1016/j.eswa.2011.04.222
Lin, C. M., Huang, J. J., Gen, M., & Tzeng, G. H. (2006). Recurrent neural network for dynamic portfolio selection. Applied Mathematics and Computation, 175(2), 1139-1146.
Samarawickrama, A. J. P., & Fernando, T. G. I. (2017, December). A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market. In 2017 IEEE International Conference on Industrial and Information Systems (ICIIS) (pp. 1-6). IEEE.
Lee, H. C., & Ko, B. (2019). Fund price analysis using convolutional neural networks for multiple variables. IEEE Access, 7, 183626-183633.
Ma, Y., Han, R., & Wang, W. (2020). Prediction-based portfolio optimization models using deep neural networks. Ieee Access, 8, 115393-115405. Doi: 10.1109/ACCESS.2020.3003819
Lee, S. I., & Yoo, S. J. (2020). Threshold-based portfolio: the role of the threshold and its applications. The journal of supercomputing, 76(10), 8040-8057.
Alizadeh, M., Rada, R., Jolai, F., & Fotoohi, E. (2011). An adaptive neuro‐fuzzy system for stock portfolio analysis. International Journal of Intelligent Systems, 26(2), 99-114.
Sharif Far, A., Khaliliaraghi, M., Raeesi Vanani, I., & Fallahshams, M. (2022). Application of Deep Learning Architectures in Stock Price Forecasting: A Convolutional Neural Network‎ Approach. Journal of Asset Management and Financing, 10(3), 1-20. [In Presian] doi: 10.22108/AMF.2022.129205.1673
Heidari, M., & Amiri, H. (2022). Inspecting the Predictive Power of Artificial Intelligence Models in Predicting the Stock Price Trend in Tehran Stock Exchange. Financial Research Journal, 24(4), 602-623. [In Persian] doi: 10.22059/FRJ.2022.320064.1007149
Zoghi, S., Raei, R., & Falahpor, S. (2022). Presenting a market direction prediction model for gold coin trades in Iran’s Commodity Exchange market using Long Short-Term Memory (LSTM) algorithm. Financial Engineering and Portfolio Management, 13(53), 34-53. [In Persian]
Sarchami, M., Khodamipour, A., Mohammadi, M., & Zeinali, H. (2020). Applying machine learning models in creation of share optimum portfolio and their comparison. Financial Engineering and Portfolio Management, 11(45), 147-176. [In Presian] doi: 20.1001.1.22519165.1399.11.45.7.4
Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., & Duarte, W. M. (2019). Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Systems with Applications, 115, 635-655. Doi: 10.1016/j.eswa.2018.08.003
Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654-669. Doi: 10.1016/j.ejor.2017.11.054
Wang, W., Li, W., Zhang, N., & Liu, K. (2020). Portfolio formation with preselection using deep learning from long-term financial data. Expert Systems with Applications, 143, 113042. Doi: 10.1016/j.eswa.2019.113042
Ta, V. D., Liu, C. M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437. Doi: 10.3390/app10020437
Chaweewanchon, A., & Chaysiri, R. (2022). Markowitz mean-variance portfolio optimization with predictive stock selection using machine learning. International Journal of Financial Studies, 10(3), 64. Doi: doi.org/10.3390/ijfs10030064
Yang, M., & Wang, J. (2022). Adaptability of financial time series prediction based on BiLSTM. Procedia Computer Science, 199, 18-25. Doi: 10.1016/j.procs.2022.01.003
Books
Deboeck, G. J. (Ed.). (1994). Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets (Vol. 39). John Wiley & Sons. ISBN: 978-0-471-31100-3