Ardia, D., Boudt, K., Carl, P., Mullen, K., & Peterson, B. G. (2011). Differential evolution with DEoptim: an application to non-convex portfolio optimization.
The R Journal,
3(1), 27–34.
doi: 10.32614/RJ-2011-002.
Arsi, S., Ben Khelifa, S., Ghabri, Y., & Mzoughi, H. (2022). Cryptocurrencies: Key risks and challenges. In Cryptofinance: A new currency for a new economy (pp. 121–145). World Scientific.
Bao, T. Q., & My, B. T. T. (2019). Forecasting stock index based on hybrid artificial neural network models. Science & Technology Development Journal-Economics-Law and Management, 3(1), 52–57.
Bariviera, A. F., Basgall, M. J., Hasperué, W., & Naiouf, M. (2017). Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and Its Applications, 484, 82–90.
Briere, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: Portfolio diversification with bitcoin.
Journal of Asset Management,
16, 365–373.
doi: 10.1057/jam.2015.16.
Buczynski, M., & Chlebus, M. (2024). GARCHNet: Value-at-Risk Forecasting with GARCH Models Based on Neural Networks. Computational Economics, 63(5), 1949–1979.
Charfeddine, L., Benlagha, N., & Maouchi, Y. (2020). Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors. Economic Modelling, 85, 198–217.
Doodangeh, A., Sinaei, H., & Qasemiyeh, R. (2024). Optimized portfolio model based on prediction using CNN neural network and MSAD criterion in the Tehran Stock Exchange. Strategic Budget and Finance Research, 5(3), 11–30.dor:
20.1001.1.27171809.1403.5.3.1.2 .[In Persian].
Estrada, J. (2000). The cost of equity in emerging markets: a downside risk approach.
Eskandari, R., Panahian, H., Eskandari, R., & Ghoddati, H. (2024). Evaluating the coverage capability of cryptocurrencies on investment risk in the coin and stock market in Iran.
Financial Research. https://
doi.org/10.22059/frj.2024.364914.1007505. [In Persian].
Fallah, S., & Mir Fayz, Sh. (2019). Comparison of the efficiency of the mean-variance model and the Fama theory in optimizing investment portfolios in the Tehran Stock Exchange. Business Management, 42(11), 128-142. [In Persian].
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics,
33(1), 3–56.
doi: 10.1016/0304-405X(93)90023-5.
Félez-Viñas, E., Foley, S., Karlsen, J. R., & Svec, J. (2021). Better than Bitcoin? Can cryptocurrencies beat inflation? Can Cryptocurrencies Beat Inflation.
Katina, J., Katin, I., & Komarova, V. (2024). Cryptocurrency price forecasting: a comparative analysis of autoregressive and recurrent neural network models. Entrepreneurship and Sustainability Issues., 11(4), 425–436.
Khan, F. I., Amyotte, P. R., & Amin, M. T. (2020). Advanced methods of risk assessment and management: An overview. Methods in Chemical Process Safety, 4, 1–34.
Lee, H.-H., & Su, K.-K. (2024). Asset Allocation with Cryptocurrencies. In Handbook of Investment Analysis, Portfolio Management, and Financial Derivatives: In 4 Volumes (pp. 2795–2858). World Scientific.
Letho, L., Chelwa, G., & Alhassan, A. L. (2022). Cryptocurrencies and portfolio diversification in an emerging market. China Finance Review International.
Li, L. (2002). Macroeconomic factors and the correlation of stock and bond returns. Available at SSRN 363641.
Lilhore, U. K., Manoharan, P., Sandhu, J. K., Simaiya, S., Dalal, S., Baqasah, A. M., Alsafyani, M., Alroobaea, R., Keshta, I., & Raahemifar, K. (2023). Hybrid model for precise hepatitis-C classification using improved random forest and SVM method. Scientific Reports, 13(1), 12473.
Liu, J., & Serletis, A. (2019). Volatility in the cryptocurrency market. Open Economies Review, 30(4), 779–811.
Lu, M., & Xu, X. (2024). TRNN: An efficient time-series recurrent neural network for stock price prediction. Information Sciences, 657, 119951.
Javaheri, S., Shabani, A., & Qaemi Asl, M. (2024). Investigating the spillover effect of returns in three markets: Forex, cryptocurrency, and the Tehran Stock Exchange, using the time-varying parameters VAR model (TVP-VAR). Strategic Budget and Finance Research, 5(1), 31–56.dor:
20.1001.1.27171809.1403.5.1.2.9. [In Persian]
Makarov, I., & Schoar, A. (2022). Cryptocurrencies and decentralized finance (DeFi). Brookings Papers on Economic Activity, 2022(1), 141–215.
Mandala, J., Soehaditama, J. P., Hernawan, M. A., Yulihapsari, I. U., & Sova, M. (2023). Implementing the Capital Asset Pricing Model in Forecasting Stock Returns: A Literature Review. Indonesian Journal of Business Analytics, 3(2), 171–182.
Markowitz, H. M. (1968). Portfolio selection. Yale university press.
Mousavi Loulati, S. A., Ghanbari, H., & Mohammadi, O. (1403). Optimizing the investment portfolio using the semi-variance model with emphasis on positive potential (Case study: Tehran Stock Exchange). Strategic Budget and Finance Research, 5(1), 57-78.dor:
20.1001.1.27171809.1403.5.1.3.0. [In Persian]
Peng, C., Kim, Y. S., & Mittnik, S. (2022). Portfolio Optimization on Multivariate Regime-Switching GARCH Model with Normal Tempered Stable Innovation.
Journal of Risk and Financial Management,
15(5), 230.
doi: 10.3390/jrfm15050230.
Rajabi Khanqah, A., Nikoomehram, H., Taqavi, M., & Mir Fayz, Sh., .(2020). Evaluation of multivariate GARCH models in estimating value at risk for currency, stock, and gold markets. Investment Knowledge, 9(34), 15-39. [In Persian].
Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk.
Journal of Risk,
2, 21–42.
doi: 10.21314/JOR.2000.043.
Saranj, A. and Nourahmadii, M. (2016). Estimating of value at risk and expected shortfall by using conditional extreme value approach in Tehran Securities Exchange.
Financial Research Journal,
18 (3), 437-460.
doi: 10.22059/jfr.2016.62450[In Persian].
Tang, S. (2022). Measurement and Management of Interest Rate Risk of Commercial Banks: Based on VaR-GARCH Model of a Case Study of SHIBOR. Scientific and Social Research, 4(1), 89–100.